33 research outputs found

    Cellular spanning trees and Laplacians of cubical complexes

    Get PDF
    We prove a Matrix-Tree Theorem enumerating the spanning trees of a cell complex in terms of the eigenvalues of its cellular Laplacian operators, generalizing a previous result for simplicial complexes. As an application, we obtain explicit formulas for spanning tree enumerators and Laplacian eigenvalues of cubes; the latter are integers. We prove a weighted version of the eigenvalue formula, providing evidence for a conjecture on weighted enumeration of cubical spanning trees. We introduce a cubical analogue of shiftedness, and obtain a recursive formula for the Laplacian eigenvalues of shifted cubical complexes, in particular, these eigenvalues are also integers. Finally, we recover Adin's enumeration of spanning trees of a complete colorful simplicial complex from the cellular Matrix-Tree Theorem together with a result of Kook, Reiner and Stanton.Comment: 24 pages, revised version, to appear in Advances in Applied Mathematic

    Simplicial matrix-tree theorems

    Get PDF
    We generalize the definition and enumeration of spanning trees from the setting of graphs to that of arbitrary-dimensional simplicial complexes Δ\Delta, extending an idea due to G. Kalai. We prove a simplicial version of the Matrix-Tree Theorem that counts simplicial spanning trees, weighted by the squares of the orders of their top-dimensional integral homology groups, in terms of the Laplacian matrix of Δ\Delta. As in the graphic case, one can obtain a more finely weighted generating function for simplicial spanning trees by assigning an indeterminate to each vertex of Δ\Delta and replacing the entries of the Laplacian with Laurent monomials. When Δ\Delta is a shifted complex, we give a combinatorial interpretation of the eigenvalues of its weighted Laplacian and prove that they determine its set of faces uniquely, generalizing known results about threshold graphs and unweighted Laplacian eigenvalues of shifted complexes.Comment: 36 pages, 2 figures. Final version, to appear in Trans. Amer. Math. So

    Simplicial and Cellular Trees

    Get PDF
    Much information about a graph can be obtained by studying its spanning trees. On the other hand, a graph can be regarded as a 1-dimensional cell complex, raising the question of developing a theory of trees in higher dimension. As observed first by Bolker, Kalai and Adin, and more recently by numerous authors, the fundamental topological properties of a tree --- namely acyclicity and connectedness --- can be generalized to arbitrary dimension as the vanishing of certain cellular homology groups. This point of view is consistent with the matroid-theoretic approach to graphs, and yields higher-dimensional analogues of classical enumerative results including Cayley's formula and the matrix-tree theorem. A subtlety of the higher-dimensional case is that enumeration must account for the possibility of torsion homology in trees, which is always trivial for graphs. Cellular trees are the starting point for further high-dimensional extensions of concepts from algebraic graph theory including the critical group, cut and flow spaces, and discrete dynamical systems such as the abelian sandpile model.Comment: 39 pages (including 5-page bibliography); 5 figures. Chapter for forthcoming IMA volume "Recent Trends in Combinatorics

    A non-partitionable Cohen-Macaulay simplicial complex

    Get PDF
    A long-standing conjecture of Stanley states that every Cohen-Macaulay simplicial complex is partitionable. We disprove the conjecture by constructing an explicit counterexample. Due to a result of Herzog, Jahan and Yassemi, our construction also disproves the conjecture that the Stanley depth of a monomial ideal is always at least its depth.Comment: Final version. 13 pages, 2 figure

    A weighted cellular matrix-tree theorem, with applications to complete colorful and cubical complexes

    Get PDF
    We present a version of the weighted cellular matrix-tree theorem that is suitable for calculating explicit generating functions for spanning trees of highly structured families of simplicial and cell complexes. We apply the result to give weighted generalizations of the tree enumeration formulas of Adin for complete colorful complexes, and of Duval, Klivans and Martin for skeleta of hypercubes. We investigate the latter further via a logarithmic generating function for weighted tree enumeration, and derive another tree-counting formula using the unsigned Euler characteristics of skeleta of a hypercube and the Crapo β\beta-invariant of uniform matroids.Comment: 22 pages, 2 figures. Sections 6 and 7 of previous version simplified and condensed. Final version to appear in J. Combin. Theory Ser.

    The Partitionability Conjecture

    Get PDF
    This is the authors' accepted manuscript. First published in Notices of the American Mathematical Society Volume 64 Issue 2, 2017, published by the American Mathematical Society.In 1979 Richard Stanley made the following conjecture: Every Cohen-Macaulay simplicial complex is partitionable. Motivated by questions in the theory of face numbers of simplicial complexes, the Partitionability Conjecture sought to connect a purely combinatorial condition (partitionability) with an algebraic condition (Cohen-Macaulayness). The algebraic combinatorics community widely believed the conjecture to be true, especially in light of related stronger conjectures and weaker partial results. Nevertheless, in a 2016 paper [DGKM16], the three of us (Art, Carly, and Jeremy), together with Jeremy's graduate student Bennet Goeckner, constructed an explicit counterexample. Here we tell the story of the significance and motivation behind the Partitionability Conjecture and its resolution. The key mathematical ingredients include relative simplicial complexes, nonshellable balls, and a surprise appearance by the pigeonhole principle. More broadly, the narrative theme of modern algebraic combinatorics: to understand discrete structures through algebraic, geometric, and topological lenses

    Simplicial effective resistance and enumeration of spanning trees

    Full text link
    A graph can be regarded as an electrical network in which each edge is a resistor. This point of view relates combinatorial quantities, such as the number of spanning trees, to electrical ones such as effective resistance. The second and third authors have extended the combinatorics/electricity analogy to higher dimension and expressed the simplicial analogue of effective resistance as a ratio of weighted tree enumerators. In this paper, we first use that ratio to prove a new enumeration formula for color-shifted complexes, confirming a conjecture by Aalipour and the first author, and generalizing a result of Ehrenborg and van Willigenburg on Ferrers graphs. We then use the same technique to recover an enumeration formula for shifted complexes, first proved by Klivans and the first and fourth authors. In each case, we add facets one at a time, and give explicit expressions for simplicial effective resistances of added facets by constructing high-dimensional analogues of currents and voltages (respectively homological cycles and cohomological cocycles).Comment: 27 pages, minor revisions from v
    corecore